skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Milward, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Abstract The ocean response to Antarctic Ice Sheet (AIS) mass loss has been extensively studied using numerical models, but less attention has been given to the atmosphere. We examine the global atmospheric response to AIS meltwater in an ensemble of experiments performed using two fully coupled climate models under a pre‐industrial climate. In response to AIS meltwater, the experiments yield cooling from the surface to the tropopause over the subpolar Southern Ocean, warming in the Southern Hemisphere polar stratosphere, and cooling in the upper tropical troposphere. Positive feedbacks, initiated by disrupted ocean‐atmosphere heat exchange, result in a change in the top‐of‐atmosphere radiative balance caused primarily through surface and near‐surface albedo changes. Changes in the atmospheric thermal structure alter the jet streams aloft. The results highlight the global influence of AIS melting on the climate system and the potential for impacts on mid‐latitude climate patterns and delayed regional warming signals. 
    more » « less